If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=1618
We move all terms to the left:
x^2-(1618)=0
a = 1; b = 0; c = -1618;
Δ = b2-4ac
Δ = 02-4·1·(-1618)
Δ = 6472
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6472}=\sqrt{4*1618}=\sqrt{4}*\sqrt{1618}=2\sqrt{1618}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{1618}}{2*1}=\frac{0-2\sqrt{1618}}{2} =-\frac{2\sqrt{1618}}{2} =-\sqrt{1618} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{1618}}{2*1}=\frac{0+2\sqrt{1618}}{2} =\frac{2\sqrt{1618}}{2} =\sqrt{1618} $
| 5s+3.55=36.35 | | 6+(2x-17)=180 | | 5x+1-2(x+1)=9x+4 | | 3(3a-6)=0 | | 2(5x+4)–11=4x+3(2x–1) | | 3x+4*3=57 | | -13x-146=166-x | | -6(y-11)=-36 | | 60-p=11 | | 4.6=2.4+.2x | | 9y-7y-13=7.92 | | 7+10=4r+15+4r | | -4(7-7x)=-28 | | 3/4-x/2=2/3+x/3 | | 2n-8=88 | | 2(-2x+9)=-26 | | −x2+14x−49=0 | | x-4=-4-4x | | n/8+18=24 | | 2(x-5)=4(x-6) | | (1.08)^x=4 | | 4(3x-1=5x-11 | | (x-1)/2=x/3 | | x–12=36 | | -146+10x=126 | | 1/10y+5=-18 | | −5x+8=−3x | | 2=s−4 | | 7/w=14 | | 11/5y+10=4-4/5y | | 8x+9=8x–5 | | 3n2−16n+16=0 |